Penzias y Wilson, en 1993, ante la antena con la que descubrieron la radiación cósmica de fondo. |
El interés por el cosmos venía del descubrimiento de Edwin Hubble, en 1929, de que las galaxias en el universo están alejándose unas de otras y, cuanto más lejanas, mayor es su velocidad de recesión. Entonces, si uno da marcha atrás a la secuencia haciendo que las galaxias se acerquen unas a otras, llegaría un momento en que todo el universo estaría concentrado en un punto de máxima densidad y temperatura a partir del cual, poniendo de nuevo la película en modo avance, tendríamos el cosmos en expansión que los astrónomos observaban. Varios físicos teóricos habían estado explorando cómo y cuándo se habrían formado los elementos en ese cosmos superdenso inicial, y sus cálculos coincidían estupendamente con los datos observacionales. La idea del Big Bang como historia del universo iba ganando cuerpo.
Mapa de las variaciones de temperatura en la radiación cósmica de fondo. |
Una conversación con un colega les dio una pista: un grupo de físicos teóricos de la Universidad de Princeton trabajaban sobre la hipótesis de que la radiación de aquel universo primitivo supeconcentrado y supercaliente se habría enfriado por la expansión del universo y sería ahora equivalente a pocos grados por encima del cero absoluto. Penzias y Wilson publicaron el histórico artículo sobre su hallazgo de la radiación a unos 3,5 grados en mayo de 1965, sin hacer ninguna interpretación de la misma y citando una nota en la misma revista Astrophysical Journal de cuatro científicos de Princeton (Robert H. Dicke, Jim Peebles,P.G.Roll y David Wilkinson) sobre la interpretación cosmológica de radiación de fondo de microondas. Lo cierto es que varios científicos habían avanzado también en estas hipótesis.
¿Pero qué era esa radiación difusa de microondas en toda la bóveda celeste?
Durante los primeros tiempos tras la explosión inicial, el universo estaba demasiado caliente como para que los átomos fueran estables. En ese entorno de núcleos y electrones sueltos los fotones de luz no podían circulaban libremente y el cosmos era como una sopa opaca. Pero cuando el universo tenía unos 380.000 años se había enfriado lo suficiente como para que se formaran átomos neutros y los fotones empezaron a viajar libremente. El universo se hizo transparente. Aquellos fotones entonces eran de altísima energía, pero ahora, 13.820 millones de años después, se han enfriado en el universo en expansión hasta esa temperatura equivalente de pocos grados kelvin de la radiación que Penzias y Wilson descubrieron.
Surgió entonces otro problema con el Big Bang: si aquella radiación primitiva era tan uniforme ¿cómo explicar el origen de las galaxias y los grupos de ellas que se observan en el cielo? Los científicos tardaron en resolver la paradoja: en 1992, el satélite COBE descubrió que esa radiación de fondo no era uniforme, sino que tenía variaciones minúsculas de temperatura, lo que abría la puerta a una explicación. Esas fluctuaciones serían como semillas de las galaxias y grupos galácticos.
El descubrimiento del fondo de radiación de microondas, predicho por la teoría del Big Bang, no solo convenció a la comunidad científica de la validez del origen caliente del universo, sino que abrió las puertas a la búsqueda de las fluctuaciones que más tarde crecerían para dar lugar a las galaxias y toda la estructura a gran escala del universo, que se descubrió 30 años más tarde y que nos está permitiendo hoy en día conectar el universo primitivo con el universo actual en expansión acelerada.
No hay comentarios:
Publicar un comentario